Product Description
Komatsu bulldozer D155AX6 hydraulic bucket,lift cylinder
Our excavator hydraulic cylinder has 3 types,boom cylinder,arm cylinder,also named stick cylinder,bucket cylinder, we also can make bulldozer hydraulic lift cylinder.
They are made from good material 40Cr that are heat-treated and hardened to improve the lifespan while meeting the demanding requirements of earthmoving and mining applications.
HangZhou Fortune Industrial Co., Limited | |
Product Name | Komatsu bulldozer bucket cylinder,lift cylinder and steering cylinder |
Production Standard | OEM |
Material | 40Cr steel purchased from first class steel plant |
Process | Forging&Casting,Machining,Heat Treatment |
Painting Color | Black or Yellow or as customers’ request |
Finish | Smooth |
Surface Hardness | HRC44-52, Depth:8mm-12mm |
Quality Guarantee | One year |
Certification | ISO9001-9002 |
Delivery Time | Within 10–20 days after sales contract establishment |
Package | Fumigate seaworthy packing and Export Standard Package |
Payment Term | TT, L/C, Paypal, Western union,D/P |
Usage | Mining &Construction &Road &Agricuture &Earth moving |
Hydraulic Cylinder Tube: Using imported equipment rolling machine
Kind of steel | 45# | Tensile strength N/mm | ≥647 |
Linearity | 0.3-1/1000 | Specific elongation | ≥4 |
Precision of size | HB | 207 | |
Roughness of inner hole | 0.4-0.8 |
Our excavator attachment boom,arm and bucket cylinder advantage(Why Choose ours) |
1.Professional sales team |
2. Produced using high performance wearable steel |
3. Production quality control: hardness testing,dimension inspection and visual inspection |
4.Superior designs and carefully manufactured |
5.Certificated by ISO9001:2008 |
6.Produce as per client’s samples,designs and drawings |
7.Fast production and delivery |
HangZhou Fortune Machinery Co., Ltd. is 1 of main manufacturers and exporters of undercarriage parts for excavators and bulldozers for more than 15 years in China. Its factory is located at HangZhou City of ZheJiang Province, very near HangZhou Port with a very convenient transportation.
HangZhou Fortune Machinery mainly supply undercarriage replacement parts such as track rollers, top rollers, sprockets, segments, idler assy, track link assy, track shoe, bucket, bucket teeth, bucket link, I link, cutting side, end bits, long boom&arm, bushings pins, bolts and nuts for excavators and bulldozers. Its products are applicable for most famous makes such as Komatsu, Hitachi, Caterpillar, Kobelco, Kato, Daewoo, Hyundai, CHINAMFG and so on. Most products are exported to European, Southeast Asia, Middle East, South America etc.
With the principal “Good quality and Best services at reasonable prices”, we strive to continually improve our production technique to provide better products at better prices. We cordially welcome the customers from all over the world to consult and visit, on the basis of mutual benefit and creat refulgence together.
BRAND |
|
|||||||
KOMATSU | PC30 | PC40 | PC45 | PC60 | PC75 | PC100 | PC120 | PC200 |
EXCAVATOR | PC220 | PC300 | PC350 | PC400 | ||||
CATERPILLAR | E70B | E110 | E120 | E200B | E307 | E311 | E312 | E320 |
EXCAVATOR | E322 | E325 | E300B | E330 | ||||
KOMATSU | D20 | D21 | D30 | D31 | D37 | D40 | D50 | D60 |
BULLDOZER | D63 | D65 | D80 | D85 | D135 | D155 | D355 | D375 |
CATERPILLAR | D3C | D3D | D4 | D4C | D4D | D4E | D5 | D5H |
BULLDOZER | D6 | D6C | D6D | D6H | D7E | D7G | D8N | D9N |
HITACHI | EX30 | EX40 | EX60 | EX100 | EX120 | EX200 | EX220 | EX300 |
EX400 | ZAX200 | ZX330 | ZX350 | UH07 | UH081 | UH083 | ||
DAEWOO | DH55 | DH200 | DH220 | DH280 | DH300 | DH320 | ||
HYUNDAI | R55 | R110 | R130 | R150 | R200 | R210 | R250 | R290 |
KEBELCO | SK60 | SK100 | SK120 | SK200 | SK220 | SK300 | K904 | K907 |
MITSUBISHI | MS110 | MS120 | MS140 | MS180 | ||||
KATO | HD140 | HD250 | HD400 | HD550 | HD700 | HD850 | HD900 | HD1220 |
SAMSUNG H.I. | MX8 | SE200 | SE210 | SE280 | MX292 | SE350 | ||
SUMITOMO | SH70 | SH100 | SH120 | SH160 | SH200 | SH280 | SH300 | SH340 |
FAQ:
1. You are a trader or a manufacture?
We are an industry and trade integration business, our factory located on HangZhou Nanan Distric, and our sales department is in City centre of HangZhou. The distance is 80Kms, 1.5 hours.
2. How can I be sure the part will fit my excavator?
Give us correct model number/machine serial number/ any numbers on the parts itself. Or measure the parts give us dimension or drawing.
3. How about the payment terms?
We usually accept T/T or L/C. other terms also could be negotiated.
4. What is your minimum order?
It depends on what you are buying. Normally, our minimum order is USD5000. 1 20′ full container and LCL container (less than a container load) can be acceptable.
5. What is your delivery time?
FOB HangZhou or any Chinese port : 20 days . If there are any parts in stock , our delivery time is only 7-10 days.
6. What about Quality Control?
We have a perfect QC system for the perfect products. A team who will detect the product quality and specification piece carefully, monitoring every production process until packing is complete, to ensure product safety into container.
Contact us:
HangZhou Fortune Industrial Co., Ltd.
Contact person:James Xie
fortunepart
Type: | Crawler |
---|---|
Application: | Excavator |
Certification: | CE, ISO9001: 2000 |
Condition: | New |
Material: | 40cr |
Hardness: | HRC50–55 |
Customization: |
Available
|
|
---|
How do hydraulic cylinders handle the challenges of precise positioning and control?
Hydraulic cylinders are designed to handle the challenges of precise positioning and control with a combination of engineering principles and advanced control systems. These challenges often arise in applications where accurate and controlled movements are required, such as in industrial automation, construction, and material handling. Here’s a detailed explanation of how hydraulic cylinders overcome these challenges:
1. Fluid Power Control:
– Hydraulic cylinders utilize fluid power control to achieve precise positioning and control. The hydraulic system consists of a hydraulic pump, control valves, and hydraulic fluid. By regulating the flow of hydraulic fluid into and out of the cylinder, operators can control the speed, direction, and force exerted by the cylinder. The fluid power control allows for smooth and accurate movements, enabling precise positioning of the hydraulic cylinder and the attached load.
2. Control Valves:
– Control valves play a crucial role in handling the challenges of precise positioning and control. These valves are responsible for directing the flow of hydraulic fluid within the system. They can be manually operated or electronically controlled. Control valves allow operators to adjust the flow rate of the hydraulic fluid, controlling the speed of the cylinder’s movement. By modulating the flow, operators can achieve fine control over the positioning of the hydraulic cylinder, enabling precise and accurate movements.
3. Proportional Control:
– Hydraulic cylinders can be equipped with proportional control systems, which offer enhanced precision in positioning and control. Proportional control systems utilize electronic feedback and control algorithms to precisely regulate the flow and pressure of the hydraulic fluid. These systems provide accurate and proportional control over the movement of the hydraulic cylinder, allowing for precise positioning at various points along its stroke length. Proportional control enhances the cylinder’s ability to handle complex tasks that require precise movements and control.
4. Position Feedback Sensors:
– To achieve precise positioning, hydraulic cylinders often incorporate position feedback sensors. These sensors provide real-time information about the position of the cylinder’s piston rod. Common types of position feedback sensors include potentiometers, linear variable differential transformers (LVDTs), and magnetostrictive sensors. By continuously monitoring the position, the feedback sensors enable closed-loop control, allowing for accurate positioning and control of the hydraulic cylinder. The feedback information is used to adjust the flow of hydraulic fluid to achieve the desired position accurately.
5. Servo Control Systems:
– Advanced hydraulic systems employ servo control systems to handle the challenges of precise positioning and control. Servo control systems combine electronic control, position feedback sensors, and proportional control valves to achieve high levels of accuracy and responsiveness. The servo control system continuously compares the desired position with the actual position of the hydraulic cylinder and adjusts the flow of hydraulic fluid to minimize any positional error. This closed-loop control mechanism enables the hydraulic cylinder to maintain precise positioning and control, even under varying loads or external disturbances.
6. Integrated Automation:
– Hydraulic cylinders can be integrated into automated systems to achieve precise positioning and control. In such setups, the hydraulic cylinders are controlled by programmable logic controllers (PLCs) or other automation controllers. These controllers receive input signals from various sensors and use pre-programmed logic to command the hydraulic cylinder’s movements. The integration of hydraulic cylinders into automated systems allows for precise and repeatable positioning and control, enabling complex sequences of movements to be executed with high accuracy.
7. Advanced Control Algorithms:
– Advancements in control algorithms have also contributed to the precise positioning and control of hydraulic cylinders. These algorithms, such as PID (Proportional-Integral-Derivative) control, adaptive control, and model-based control, enable sophisticated control strategies to be implemented. These algorithms consider factors such as load variations, system dynamics, and environmental conditions to optimize the control of hydraulic cylinders. By employing advanced control algorithms, hydraulic cylinders can compensate for disturbances and achieve precise positioning and control over a wide range of operating conditions.
In summary, hydraulic cylinders overcome the challenges of precise positioning and control through the use of fluid power control, control valves, proportional control, position feedback sensors, servo control systems, integrated automation, and advanced control algorithms. By combining these elements, hydraulic cylinders can achieve accurate and controlled movements, enabling precise positioning and control in various applications. These capabilities are essential for industries that require high precision and repeatability in their operations, such as industrial automation, robotics, and material handling.
What considerations are important when selecting hydraulic cylinders for mobile equipment?
To select hydraulic cylinders for mobile equipment, several important considerations need to be taken into account. Here are the key factors to consider:
- Load Capacity: Determine the maximum load or force that the hydraulic cylinder will need to support. This includes both the static load and any dynamic or shock loads that may be encountered during operation.
- Stroke Length: Consider the required stroke length, which is the distance the hydraulic cylinder can extend and retract. Ensure that the stroke length is sufficient for the specific application and range of motion needed.
- Operating Pressure: Determine the maximum operating pressure required for the hydraulic system. This will depend on the load and the specific application. Select a hydraulic cylinder with a pressure rating that exceeds the maximum operating pressure to ensure safety and durability.
- Mounting Style: Consider the available space and the mounting requirements of the mobile equipment. Hydraulic cylinders come in various mounting styles, such as flange, trunnion, clevis, and pivot, among others. Choose a mounting style that is compatible with the equipment and provides the necessary support and stability.
- Size and Weight: Take into account the physical dimensions and weight of the hydraulic cylinder. Ensure that it can fit within the available space and that the equipment can support its weight without compromising performance or safety.
- Speed and Precision: Evaluate the required speed and precision of the hydraulic cylinder’s movement. Different cylinder designs and configurations can affect the speed and accuracy of motion. Consider factors such as cylinder bore size, rod diameter, and the presence of cushioning or dampening features.
- Environmental Factors: Assess the operating environment of the mobile equipment. Consider factors such as temperature extremes, exposure to moisture, dust, and chemicals. Select hydraulic cylinders with appropriate seals and coatings that can withstand the environmental conditions and prevent corrosion or damage.
- Reliability and Maintenance: Consider the reliability and maintenance requirements of the hydraulic cylinders. Look for reputable manufacturers that provide high-quality products with a proven track record. Evaluate factors such as expected service life, availability of spare parts, and ease of maintenance.
- Cost: Finally, consider the cost of the hydraulic cylinders, including the initial purchase price, installation costs, and long-term maintenance expenses. While it is essential to find a cost-effective solution, prioritize quality and performance to ensure safe and efficient operation.
How do hydraulic cylinders accommodate variations in stroke length and force requirements?
Hydraulic cylinders are designed to accommodate variations in stroke length and force requirements, providing flexibility and adaptability for different applications. They can be tailored to meet specific needs by considering factors such as piston diameter, rod diameter, hydraulic pressure, and cylinder design. Here’s a detailed explanation of how hydraulic cylinders accommodate variations in stroke length and force requirements:
1. Cylinder Size and Design:
– Hydraulic cylinders come in various sizes and designs to accommodate different stroke lengths and force requirements. The cylinder’s diameter, piston area, and rod diameter are key factors that determine the force output. Larger cylinder diameters and piston areas can generate greater force, while smaller diameters are suitable for applications requiring lower force. By selecting the appropriate cylinder size and design, stroke lengths and force requirements can be effectively accommodated.
2. Piston and Rod Configurations:
– Hydraulic cylinders can be designed with different piston and rod configurations to accommodate variations in stroke length. Single-acting cylinders have a single piston and can provide a stroke in one direction. Double-acting cylinders have a piston on both sides, allowing for strokes in both directions. Telescopic cylinders consist of multiple stages that can extend and retract, providing a longer stroke length compared to standard cylinders. By selecting the appropriate piston and rod configuration, the desired stroke length can be achieved.
3. Hydraulic Pressure and Flow:
– The hydraulic pressure and flow rate supplied to the cylinder play a crucial role in accommodating variations in force requirements. Increasing the hydraulic pressure increases the force output of the cylinder, enabling it to handle higher force requirements. By adjusting the pressure and flow rate through hydraulic valves and pumps, the force output can be controlled and matched to the specific requirements of the application.
4. Customization and Tailoring:
– Hydraulic cylinders can be customized and tailored to meet specific stroke length and force requirements. Manufacturers offer a wide range of cylinder sizes, stroke lengths, and force capacities to choose from. Additionally, custom-designed cylinders can be manufactured to suit unique applications with specific stroke length and force demands. By working closely with hydraulic cylinder manufacturers, it is possible to obtain cylinders that precisely match the required stroke length and force requirements.
5. Multiple Cylinders and Synchronization:
– In applications that require high force or longer stroke lengths, multiple hydraulic cylinders can be used in combination. By synchronizing the movement of multiple cylinders through the hydraulic system, the stroke length and force output can be effectively increased. Synchronization can be achieved using mechanical linkages, electronic controls, or hydraulic circuitry, ensuring coordinated movement and force distribution across the cylinders.
6. Load-Sensing and Pressure Control:
– Hydraulic systems can incorporate load-sensing and pressure control mechanisms to accommodate variations in force requirements. Load-sensing systems monitor the load demand and adjust the hydraulic pressure accordingly, ensuring that the cylinder delivers the required force without exerting excessive force. Pressure control valves regulate the pressure within the hydraulic system, allowing for precise control and adjustment of the force output based on the application’s needs.
7. Safety Considerations:
– When accommodating variations in stroke length and force requirements, it is essential to consider safety factors. Hydraulic cylinders should be selected and designed with an appropriate safety margin to handle unexpected loads or variations in operating conditions. Safety mechanisms such as overload protection valves and pressure relief valves can be incorporated to prevent damage or failure in situations where the force limits are exceeded.
By considering factors such as cylinder size and design, piston and rod configurations, hydraulic pressure and flow, customization options, synchronization, load-sensing, pressure control, and safety considerations, hydraulic cylinders can effectively accommodate variations in stroke length and force requirements. This flexibility allows hydraulic cylinders to be tailored to meet the specific demands of a wide range of applications, ensuring optimal performance and efficiency.
editor by CX 2023-11-08